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Simple Summary: Most prostate cancer is of an indolent form and is curable. However, some pros-
tate cancer belongs to rather aggressive subtypes leading to metastasis and death, and immediate 
therapy is mandatory. However, for these, the therapeutic options are highly invasive, such as rad-
ical prostatectomy, radiation or brachytherapy. Hence, a precise diagnosis of these tumor subtypes 
is needed, and the thus far applied diagnostic means are insufficient for this. 
Besides this, for their endless cell divisions, prostate cancer cells need the enzyme telomerase to 
elongate their telomeres (chromatin endings). In this study, we developed a gene regulatory model 
based on large data from transcription profiles from prostate cancer and chromatin-immuno-pre-
cipitation studies. We identified the developmental regulator PITX1 regulating telomerase. Besides 
observing experimental evidence of PITX1’s functional role in telomerase regulation, we also found 
PITX1 serving as a prognostic marker, as concluded from an analysis of more than 15,000 prostate 
cancer samples. 
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Abstract: The current risk stratification in prostate cancer (PCa) is frequently insufficient to ade-
quately predict disease development and outcome. One hallmark of cancer is telomere maintenance. 
For telomere maintenance, PCa cells exclusively employ telomerase, making it essential for this can-
cer entity. However, TERT, the catalytic protein component of the reverse transcriptase telomerase, 
itself does not suit as a prognostic marker for prostate cancer as it is rather low expressed. We in-
vestigated if, instead of TERT, transcription factors regulating TERT may suit as prognostic markers. 
To identify transcription factors regulating TERT, we developed and applied a new gene regulatory 
modeling strategy to a comprehensive transcriptome dataset of 445 primary PCa. Six transcription 
factors were predicted as TERT regulators, and most prominently, the developmental morphogenic 
factor PITX1. PITX1 expression positively correlated with telomere staining intensity in PCa tumor 
samples. Functional assays and chromatin immune-precipitation showed that PITX1 activates TERT 
expression in PCa cells. Clinically, we observed that PITX1 is an excellent prognostic marker, as 
concluded from an analysis of more than 15,000 PCa samples. PITX1 expression in tumor samples 
associated with (i) increased Ki67 expression indicating increased tumor growth, (ii) a worse prog-
nosis, and (iii) correlated with telomere length. 

Keywords: regulatory networks; prostate cancer; biomarkers; PITX1; mixed integer linear program-
ming; modularity; transcription factors 
 

1. Introduction 
Prostate cancer (PCa) shows the second-highest incidence of cancer in men and is the 

fifth most frequent leading cause of cancer death [1]. Established screening of the prostate-
specific antigen (PSA) level improved early diagnosis, and nearly 90% of PCa can be lo-
calized clinically at the time of their diagnosis [2]. Even though most of the patients have 
an indolent form of PCa and are curable, some PCa belongs to rather aggressive subtypes 
leading to metastasis and death [3,4]. Therapeutic options are radical prostatectomy, ra-
diation or brachytherapy, and, in some cases, also active surveillance or applying andro-
gen depletion therapy. For patients with metastasis, drug treatment is necessary by ap-
plying chemotherapeutics (docetaxel, cabazitaxel) or androgen receptor inhibitors (e.g., 
enzalutamid) [5]. Of overriding importance for the appropriate treatment decision, well-
established risk stratification is necessary. Until now, the suggested risk stratification com-
bines Gleason score, pre-operative PSA-levels in the blood, and further pathological and 
clinical staging. However, these measurements are insufficient to adequately predict the 
outcome of patients [6], making a surveillance strategy hazardous, particularly if the pre-
diction needs to be made before prostatectomy. On top of PSA, complementary molecular 
biomarkers may improve stratifying the risk of death and progression of the disease. Pre-
vious studies of primary PCa identified several recurrent genomic alterations such as mu-
tations, gene fusions, DNA copy-number changes, and rearrangements. The most com-
mon alteration is the fusion of the genes TMPRSS2 and ERG [7]. SPOP, TP53, FOXA1, and 
PTEN are the most frequently mutated genes [8]. Based on gene fusions, mutations 
(mainly ETS), epigenetic changes (e.g., DNA methylation changes upon IDH1 mutation), 
and androgen receptor (AR) activity, seven subtypes of primary PCa were specified by 
The Cancer Genome Atlas Research Network [3,4]. However, such genetic subtyping does 
not lead to a mechanistic understanding of the patho-mechanisms. Here, we improved 
risk stratification in PCa by identifying new biomarkers via a mechanism-based approach 
investigating the regulation of telomerase. 

Telomere length maintenance is one of the hallmarks of cancer needed for replicative 
immortality of cancer cells [9]. Telomeres are nucleoprotein structures at the ends of eu-
karyotic chromosomes, protecting them against fusion, degradation, and unwanted acti-
vation of double-strand break repair mechanisms [10,11]. Telomeres progressively 
shorten with each cell division. In somatic cells, after a limited number of replications, this 



Cancers 2022, 14, 1267 3 of 23 
 

 

can induce replicative senescence or apoptosis, thereby acting as a barrier to unlimited 
proliferation and tumorigenesis [12]. Cancer cells overcome this restriction and maintain 
their telomeres by re-expressing TERT, the catalytic protein component of telomerase. For 
several tumor entities, also alternative telomere maintenance mechanisms have been de-
scribed in which TERT is not involved (ALT, Alternative Lengenthing of Telomeres), but 
these mechanisms have not been observed in PCa [13]. TERT is usually not expressed in 
differentiated somatic cells. It gets reactivated in tumor cells to extend the telomeric re-
peats [14,15]. Although TERT is central for immortality, it typically has very low expres-
sion in PCa cells, making it difficult to use it as a prognostic marker. Accordingly, we 
aimed at identifying regulators (transcription factors, TF) of TERT, which may better suit 
as biomarkers for risk stratification. TERT obeys a fine-grained and balanced regulation 
[16]. Hence, we studied its regulation by investigating a gene regulatory network model. 
In contrast to previous modeling concepts of us and others, we studied not only the role 
of directly acting TF, but also TF indirectly regulating TERT expression. For incorporating 
indirectly regulating TF, we integrated the modularity framework from graph theory into 
our previously developed regulatory interaction predictor (MIPRIP, see [17]). In graph 
theory, a scientific aim is to detect communities in a graph or network, which are either 
cliques or more relaxed clusters of highly connected nodes (for us, the genes) in the net-
work. Here, nodes are grouped into subsets such that their interactions are dense within 
the subset but sparse between the subsets [18–21]. Interestingly, not all networks are suit-
able for such divisions making the detection of such dense groups likely to have a seman-
tic structure [22]. A semantic structure in our application would be a regulatory subnet-
work being specific for a certain disease, malignancy, or other condition. Here, we fo-
cussed on identifying a semantic structure comprising direct regulators and regulators of 
TERT. Using the modularity approach, originally developed by Newman and coworkers 
[23], we assumed that direct regulators of TERT are densely intertwined with their direct 
regulators. Identifying such a module would support a mechanistic understanding of the 
specific TERT expression in subsets of PCa, and may serve as a solid basis for prognostic 
biomarker predictions. 

Using a comprehensive set of transcription profiles from PCa samples, we employed 
our gene regulatory model MIPRIP yielding directly acting TF of telomerase (in the fol-
lowing denoted as “direct regulators”), together with an integrated modularity-based 
model inferring indirectly acting TF (“indirect regulators”). 

2. Materials and Methods 
The data preprocessing, model implementation and all statistical analysis were per-

formed using R version 3.5.1 (www.r-project.org, accessed on 15 July 2018). To solve the 
MILP optimization problems Gurobi Optimizer version 7.0.1 was used under an academic 
license. The visualization of the network was conducted using Cytoscape version 3.6.1. 

2.1. Gene Expression Data 
Publicly available RNA-Seq data of 497 PCa patients and 52 healthy prostate tissue 

samples of The Cancer Genome Atlas (TCGA) was downloaded from GDAC of the Broad 
Institute (http://gdac.broadinstitute.org/, release 28 January 2016, accessed on 31 March 
2016). For our network model, we used the normalized and log2 transformed RSEM val-
ues. All genes with more than 25% NAs and low varying genes (standard deviation SD ≤ 
0.5) were filtered out. Then, a z-score transformation for each gene across the whole da-
taset was performed. For modeling, we removed all samples with no TERT expression 
value. This resulted in 445 PCa and 18 healthy prostate tissue samples. 
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2.2. The Mixed Integer Linear Model of TERT Regulation 
We used our previously developed “Mixed Integer linear Programming based Reg-

ulatory Interaction Predictor” (MIPRIP) tool [17,24] (version 2, dual-mode) to study the 
regulation of the telomerase reverse transcriptase (TERT) gene in PCa versus healthy pros-
tate tissue. MIPRIP is a software package for R (www.r-project.org) and is freely available 
at https://github.com/KoenigLabNM/MIPRIP. The basic principle of MIPRIP is that the 
expression of the gene of interest is predicted by the activity of the regulators potentially 
binding to the gene’s promoter. Due to post-translational modifications, protein stability, 
and other effects, the activity of a transcription factor (TF) depend only partially on the 
gene expression of the TF itself. Hence, we and others inferred the activity of a TF by the 
expression of its potential target genes [25–27]. We used our previously constructed ge-
neric network of the regulator to target gene interactions. These interactions were derived 
from promoter binding information from 7 different resources reporting mainly the re-
sults from ChIP-experiments. In summary, for the generic network we integrated interac-
tions from MetaCoreTM (https://portal.genego.com/, accessed on 24 February 2022), ChEA 
[28], Encode [29], HmCHIP [30], HTRI [31], ChIPBase [32] and a motif analysis using the 
total binding affinity (TBA) [33,34]. The information of these resources was weighted 
based on the reliability of the source, and the weights were added if the interaction was 
found in more than one source [17,24]. The predicted gene expression value 𝑔 of the 
TERT gene was calculated as: 𝑔 =  𝛽 + ∑ 𝛽௧ ∗  𝑒𝑠௧ ∗  𝑎𝑐𝑡௧௧்ୀଵ   (1)

where β0 is an additive offset, T the number of all investigated regulators, βt the 
optimization parameter for regulator t, 𝑒𝑠௧ the edge score between regulator t and its 
putative target gene i based on the generic gene regulatory network and 𝑎𝑐𝑡௧ the activity 
of regulator t in sample k. The activity value of a regulator was defined as the cumulative 
effect of a regulator on all its target genes and was calculated as 𝑎𝑐𝑡௧ =  ∑ 𝑒𝑠௧  ∗  𝑔ୀଵ∑ 𝑒𝑠௧ୀଵ  (2)𝑎𝑐𝑡௧ is the estimated effect of regulator t in sample k, 𝑒𝑠௧ the edge score between regu-
lator t, and gene i, 𝑔 the gene expression of gene i in sample k. For the activity calcula-
tion, the gene expression value of the target gene (TERT) itself was excluded. The edge 
score 𝑒𝑠௧ was the edge weight between the regulators and the target genes. If gene i was 
reported to be a target of regulator t the edge weight was higher than 0.  

To solve this optimization problem, we used the optimizer Gurobi 
(www.gurobi.com, accessed on 20/03/2017). To gain a representative variety of models 
with different sizes, we constructed models with one up to 10 regulators and performed 
10-times threefold cross-validation to avoid overfitting. For this, the dataset was 10-times 
randomly divided into thirds, where two-thirds were used to identify the best TF combi-
nation and the remaining third to predict the gene expression of TERT with this TF com-
bination. The performance of the model was determined by the correlation between the 
measured and the predicted gene expression value. 

2.3. Regulatory TF-TF Network 
To construct a regulatory TF-TF network, MIPRIP was combined with the concept of 

modularity from Newman [23]. With this approach, we aimed to find a highly connected 
module consisting of direct and indirect regulators 𝑅௧ of our particular gene TERT. Indi-
rect regulators were direct regulators of the direct regulators of TERT. In the following, 
all regulators binding to the promoter of the particular gene were called direct, while the 
regulators of the regulators were called indirect regulators of the particular gene. The 
MILP was as follows: 
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𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ∑ 𝑤௧భ௧మᇱ௧భ,௧మ∈ ; ௧భஷ௧మ ∙  𝑦௧భ௧మ  (3)𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑥௧భ + 𝑥௧మ − 𝑦௧భ௧మ ≤ 1 (4)𝑦௧భ௧మ ≤ 𝑥௧భ (5)𝑦௧భ௧మ ≤ 𝑥௧మ (6)∑ 𝑥௧௧்ୀଵ ≤ 𝑙𝑖𝑚𝑖𝑡  (7)𝑤௧భ௧మ = 𝑐𝑜𝑟൫𝑎𝑐𝑡௧భ, 𝑎𝑐𝑡௧మ൯ ∙ 𝑒𝑠௧భ௧మ (8)𝑤௧భ௧మ = 𝑤௧భ௧మ − 𝑑௧భ 𝑑௧మ2𝑚  (9)

with 𝑑௧ = ∑ 𝑤௧భ,௧మ and 𝑚 = ଵଶ ∑ 𝑑௧௧்ୀଵ  𝑥௧ ∈ ሼ0,1ሽ , 𝑦௧భ௧మ ∈ ሼ0,1ሽ,  (10)

where t indicates the nodes (regulators), w are the edge weights, d the degree of the node 
and T the number of all regulators. x and y are binary parameters and indicate if the nodes 
and edges were selected. The objective of the modularity-based MILP approach was to 
maximize the sum of edge weights between the connected nodes in the modularity net-
work (Formula (3)). Constraint (4) enforces that if node t1 and node t2 were in the module, 
then also the edge between t1 and t2 had to be in the module. By constraints (5–6) it was 
ensured that only edges were selected for which both end nodes were inside the module. 
The size T of the module was constrained by Equation (7). The goal of the modularity was 
to identify a highly connected module which can best explain the regulation of the partic-
ular gene of interest. Therefore, the sum of the edge weights between the connected nodes 
inside the modules was maximized and penalized if their end nodes had high degrees. 
The corresponding edge weights w were computed as described in (8–9) by multiplying 
the correlation of each regulator pair’s activity over all investigated samples k with the 
corresponding edge weights in the generic network. Because this weight was not always 
the same between node (regulator) t1 and t2, the mean value of both directions was taken. 
All these weights were computed in a preprocessing step and were constants in the MILP. 
For the combined model of MIPRIP and modularity, all equations of MIPRIP [17,24] and 
the equations above were used. As objective function of the combined model, the sum of 
objective functions of the single models was used: 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝑒,ୀଵ − 𝜆 ∑ 𝑤௧భ௧మᇱ௧భ,௧మ∈ ; ௧భஷ௧మ ∙  𝑦௧భ௧మ. (11)

MIPRIP Modularity 
Variables of the direct regulators were the same for both optimization parts. The pa-

rameter λ controlled the tradeoff between MIPRIP and the modularity network (equation 
11). The performance of the model was determined as with MIPRIP alone. The best sub-
network consists of the combination of MIPRIP regulators (defined by the 𝑥௧), which was 
used most often in all models and the corresponding modularity regulators. 

In this study, this combined model was used to identify the regulatory subnetwork 
best explaining the regulation of TERT. To reduce computational complexity, we run MI-
PRIP (single-mode) first for the identified significant direct regulators of TERT (Table 1) 
and continued only with regulators, which were used in at least 20% of the models (Table 
2). Because the gene expression data of CTCF and NR2F2 was filtered out based on low 
variances, the unfiltered gene expression values of these 2 genes were used to construct a 
MIPRIP model. For TFAP2D, nearly all gene expression values were NA, and because of 
that, no MIPRIP model was possible. Because the combined model is only based on regu-
lator activity values, for TFAP2D no further regulators were added to the restricted list of 
indirect regulators. These preprocessing steps resulted in 12 direct regulators and 72 indi-
rect regulators for the combined approach. We constructed combined models of 2 up to 
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20 direct and indirect regulators. To optimize the parameter λ, models with different sizes 
of λ (0.001, 0.01, 0.1, 0.3, 1, 3, 10, 100, 1000) were constructed, and the optimal tradeoff 
between the number of direct and indirect regulators was estimated by counting how 
many direct and indirect regulators were selected. These counts of the MIPRIP (red curve 
Figure 1A) and the modularity (blue curve) part of the model were plotted for the 9 dif-
ferent λ values. The intersection of both curves indicated the optimal λ balancing the num-
ber of direct and indirect regulators over all models. Furthermore, good performance of 
TERT prediction was observed (Figure 1). As for the MIPRIP model alone, also for the 
combined model, 10-times three-fold cross-validation was performed. 

Table 1. Significant TERT regulators of PCa compared to normal prostate tissue and vice versa. 

Regulators Tumor Frequency Tumor (n = 300 
Models) 

Frequency Normal (n = 300 Models) p-Value ** 

PITX1 * 186 (62%) 35 (12%) 1.56 × 10−37 
MITF* 119 (40%) 28 (9%) 5.97 × 10−17 

AR* 92 (31%) 21 (7%) 1.26 × 10−12 
TFAP2C* 72 (24%) 11 (4%) 1.67 × 10−12 

E2F2* 92 (31%) 24 (8%) 1.31 × 10−11 
NR2F2* 97 (32%) 27 (9%) 1.31 × 10−11 

SMARCB1 88 (29%) 24 (8%) 1.15 × 10−10 
CEBPA* 65 (22%) 20 (7%) 6.08 × 10−7 

BHLHE40* 53 (18%) 16 (5%) 8.26 × 10−6 
CTCF* 48 (16%) 15 (5%) 4.13 × 10−5 
ETS1* 63 (21%) 26 (9%) 7.43 × 10−5 
MXI1 27 (9%) 5 (2%) 1.75 × 10−4 

POLR2A 34 (11%) 9 (3%) 2.23 × 10−4 
RAD21 32 (11%) 11 (4%) 2.37 × 10−3 
IRF1* 31 (10%) 12 (4%) 6.38 × 10−3 

TFAP2D* 34 (11%) 18 (6%) 3.91 × 10−2 
MAX 36 (12%) 20 (7%) 4.62 × 10−2 

* marked TF were predicted as TERT regulators specifically for prostate cancer in a previous study of us [17]. ** adjusted 
for multiple testing correction (Benjamini-Hochberg). 

Table 2. MIPRIP analysis of the 12 identified prostate-specific TERT regulators. 

TERT 
regulator 

Regulators Used in At Least 20% of the Models 
Number of Direct 

Regulators 
Number of TERT 

Regulators 

PITX1 SMARCC1, TAF1 *, HEY1*, POLR2A*, FOXO1, HNF4A, 
ESR1*, RBBP5, SMAD1, SMARCB1* 

10 5 

AR MAFF, MAFK, ZBTB17, CREB3, GATA2, TCF4, CTCF*, 
EGR1* 

8 2 

MITF MXI1*, ZNF263, SMC3, TAL1*, MYC*, EP300, MAX* 7 4 

CTCF 
MAX*, PRDM16, YY1, RBBP5, REST*, POU2F2*, FOXP2, 

EP300 8 3 

BHLHE40 
ARNTL, HIF1A*, SIN3AK20*, EGR1*, NCOR1, AR*, CEBPB, 

GABPA, ZNF143 9 4 

ETS1 
ETV2, PAX5*, FOS, CEBPB, USF1, FOXA1, TCF7L2, IRF4, 

GATA2  9 1 

CEBPA 
SP1, CLOCK, IKZF1*, MYC*, NCOR1, FOXP2, JUN, SREBF1, 

MAZ* 9 3 
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E2F2 
E2F4*, PML, E2F7, MAFK, ELF1, HEY1*, EBF1, E2F6*, 

MAFF, TCF12* 10 4 

NR2F2 
MXI1*, TP53*, USF1, E2F4*, SF1, FOXP2, SIN3AK20*, 

ZNF263 8 4 

IRF1 NFKB.P50.P65*, IRF2, SPI1, EGR1*, MYB* 5 3 

TFAP2C 
TP63, MAX*, RAD21*, RBPJ, SP1, POU5F1, ZFP36L1, MTA1, 

E2F1*, EZH2, SETDB1 11 3 

* TF binding to the TERT promoter (potential direct regulators of TERT). 

 
Figure 1. Optimization of λ and the identified regulatory module. (A) The sum of selected TF from 
the MIPRIP model (direct TF, red curve) and from the modularity model (indirect TF, blue curve) 
over all models for different λ values. The total number of direct and indirect TF to be selected by 
the models was 6270 for each λ value (from 30 repeated cross-validations, in which each repeat 
consisted of models from 2 to 20 TF). The intersection of both curves led to the optimal λ value. (B) 
The performance over all models for different λ values. The dashed line indicates the value for the 
optimal λ. (C) Shown is the performance of the models with the optimal λ. At least six TF are nec-
essary to obtain a good prediction of TERT expression. (D) This histogram shows which combina-
tion of TF was used most often over all models. The most often combination was BHLHE40, CTCF, 
IRF1, MITF, PITX1, and TFAP2D. (E) The identified gene regulatory network for TERT regulation 
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in PCa, predicted direct regulators of TERT are marked in red. TF added by the modularity ap-
proach are marked in orange if they were known to bind to the TERT promoter and in grey if they 
only bind to the indirect regulators of TERT. The width of the edges between the significant and 
putative regulators and TERT is based on their weights in the generic regulatory network. The width 
of the interactions between the regulators was derived by the correlation of their activity values 
multiplied with the weights in the generic regulatory network. 

2.4. Immunohistochemical Analysis of PITX1 and IRF1 in PCa Patients 
The immunohistochemistry (IHC) staining of PITX1 and IRF1 was performed on a 

freshly cut tissue microarray of 17,747 patients on one day and in one experiment (sepa-
rately for PITX1 and IRF1). Patients were collected between 1992 and 2014 at the Univer-
sity Medical Center Hamburg-Eppendorf (Department of Urology and the Martini Clin-
ics), and all patients underwent radical prostatectomy (RPE). The analysis of the RPE spec-
imens was performed as described in [35]. For all patients, histopathological data such as 
tumor state, Gleason grade, nodal stage, and stage of the resections were available, as well 
as for 14,464 patients also follow-up data (1 to 275 months; 48 months median). For a sub-
set of patients there was also information on ERG expression (n = 10,677) [36], 10q23 
(PTEN) deletion (n = 6704) [37], 3p14 (FOXP1) deletion (n = 7201) (expanded from [38]), 
6q15 (MAP3K7) deletion (n = 6069) (expanded from [39]) and 5q21 (CHD1) deletion (n = 
8074) (expanded from [40]) present. The prostate-specific antigen (PSA) levels were con-
trolled, post-RPE and PSA recurrence was defined as a PSA level of ≥ 0.2 ng/mL or an 
increasing PSA level in subsequent measurements. The manufacturing process of TMA 
was performed as described in [41,42], and each TMA block also contained controls, e.g., 
normal prostate tissue. For the staining, the slides were first deparaffinized and exposed 
to heat-induced antigen retrieval for 5 min in an autoclave at 121 °C in pH 7.8 Tris-EDTA-
Citrate buffer. The primary PITX1 antibody HPA008743 (Sigma, polyclonal rabbit, dilu-
tion: 1:59) was utilized for 60 min at 37 °C. After incubation, the bound antibody was 
visualized with the EnVision Kit (Dako, Glostrup, Denmark) according to the manufac-
turer’s directions. The IHC staining of PITX1 was then validated with positive and nega-
tive control tissues on the TMA and was in line with data from the Human Protein Atlas 
[43]. Glandular cells of the normal prostate showed no PITX1 expression (data not shown). 
Tumor samples with no staining intensity were scored as “negative” (Figure S1A), while 
a staining intensity of 1+, or 2+ in >30% and ≤ 70% of tumor cells, or 3+ in ≤30% of tumor 
cells (Figure S1B) were classified as “low” and samples with a staining intensity of 2+ in 
>70% of tumor cells or 3+ in >30% of tumor cells as “high” (Figure S1C). Some spots were 
not evaluable because of lack of tissue samples or absence of unequivocal cancer tissue in 
the TMA spot. 

All statistical analyses were performed using JMP version 12.0 (SAS Institute Inc., 
Cary, NC, USA). To identify associations between PITX1 expression and the clinico-patho-
logical variables, contingency tables were calculated and tested for significance based on 
a chi-square test. For the Kaplan–Meier curves, the PSA-recurrence free survival was used 
as a clinical endpoint. Significant differences in survival between the stratified patient co-
horts (high, low and negative PITX1 expression) were identified on a log-rank test. Using 
a Cox proportional hazards regression analysis, statistical independence and significance 
between the clinical, pathological, and molecular variables were tested. 

The analysis of IRF1 (rabbit monoclonal antibody, Abcam, ab186384; dilution 1:450), 
TFAP2D [44], and CTCF [45] was performed similarly as described for PITX1. IRF-1 posi-
tive staining was usually seen in all tumor cells (100%). Therefore, the staining intensity 
was estimated in 4 categories, i.e., negative (not detectable), weak, moderate, and strong 
staining intensity. For statistical analyses, IRF-1 staining was grouped in low (including 
negative, weak, and moderate staining) and high (including strong staining).  

All archived diagnostic leftover tissues were pseudo-anonymized and used for re-
search purposes without consent as approved by local laws (HmbKHG, §12a) and by the 
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local ethics committee (Ethics commission Hamburg, WF-049/09). The study was con-
ducted in compliance with the Helsinki Declaration. 

2.5. Cell Lines 
PCa cell lines were cultured in their respective growth medium up to a maximum of 

80% confluence in a CO2 incubator (5%). Respective Cell line/medium pairs were: LNCaP-
tet (received 2003) in RPMI 1640 supplement with 10% FCS, 25 mM HEPES (pH 7.5), pen-
icillin (100 U/mL), streptomycin (100 U/mL); C4-2 (received 2000) in DMEM containing 
phenol red supplemented with 5% FCS, 25 mM HEPES (pH 7.5), penicillin (100 U/mL), 
streptomycin (100 U/mL), 20% F-12 nutrient mix; PC3 (received 2004) and PC3-AR (re-
ceived 2004) in RPMI 1640 supplement with 10% heat inactivated FCS, 25 mM HEPES (pH 
7.5), penicillin (100 U/mL), streptomycin (100 U/mL) [46–48]. 

2.6. siRNA Knockdown 
siRNA knock down was performed using ON-TARGETplus siRNA Reagents and the 

respective ON-Target Plus SMARTPool siRNA products (including non-targeting control 
Pool) all from Dharmacon. Briefly, 300,000 cells were seeded per 6 well-plate in 2 mL of 
the respective medium without antibiotics and incubated overnight. The following day 
medium was refreshed 1 hour before transfection, and the transfection was conducted 
according to manufacturer´s protocol. To notice, DharmaFECT Reagent 1 was used for 
LNCaP and PC3-AR and Reagent 3 for C4–2 and PC3. 

Western blotting was performed 72 h post-transfection using the following antibod-
ies: anti-PITX1 (ab70273, Abcam), anti-α-Tubulin (sc-2005, Santa Cruz), anti-rabbit IgG 
HPR (sc-2370, Santa Cruz). Densitometric analyses were performed using LabImage. 

Total RNA extraction was performed 48 h post-transfection by combining two 6 wells 
per condition, using Trifast (Peqlab, Radnor, PA, USA), and following the manufacturer´s 
protocol. For qRT-PCR the two-step method was used, performing the cDNA synthesis 
with the High Capacity cDNA Reverse Transcription kit (Thermo Fisher, Waltham, MA, 
USA) and quantitative reverse transcription with the SsoAdvanced Universal SYBR Green 
Supermix (Bio-rad, Hercules, CA, USA). The following primers were used for the respec-
tive mRNA: hTERT forward: CGGAAGAGTGTCTGGAGCAA, reverse: GGATGAA-
GCGGAGTCTGGA; TBP forward: GGCGTGTGAAGATAACCCAAGG, reverse: 
CGCTGGAACTCGTCTCACT; GAPDH forward: AGTCCCTGCCACACTCAG, reverse: 
TACTTTATTGATGGTACATGACAAGG; Tubulin forward: TGGAACCCACAGTCATT-
GATGA, reverse: TGATCTCCTTGCCAATGGTGTA. 

2.7. Chromatin Immunoprecipitation 
ChIP was performed 72 h post transfection according to the manufacturer´s protocol 

using the SimpleChIP enzymatic chromatin IP kit (magnetic beads)(cell signaling technol-
ogy). Transfection was adapted for 15 cm cell culture dishes and seeding 4 × 106 cells per 
dish. For IP the same PITX1 antibody as for Western Blot was used. qPCR for the hTERT 
promoter region was performed using the SsoAdvanced Universal SYBR Green Supermix 
(Bio-rad and the following primers obtained from Qi et al. [49]. −1.3kb forward 
TTTCCAAACCGCCCCTTT, reverse CTGTCACGCTCGCTGGAG. As negative control 
primers for the -0.1kb TERT promoter region were used to show specific PITX1 binding 
and antibody functionality, forward: TGCCCCTTCACCTTCCAG, reverse: 
GCGCTGCCTGAAACTCGC. 
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2.8. Statistical Analysis 
For statistical analysis, a two-tailed unpaired student t-test was used. The p-value 

≤0.05 was considered as statistically significant (p ≤ 0.05 *, p ≤ 0.01 **, p ≤ 0.001 *** and p ≤ 
0.0001 ****). 

3. Results 
3.1. The Direct Model Predicts Specific Transcription Factors of TERT in PCa 

First, we identified TF directly regulating TERT. 75 TF known to bind at the TERT 
promoter were selected from databases storing experimentally derived binding data 
(ChIP, ChIP-seq, and ChIP-chip) and computationally inferred (motif-based) TF-binding 
predictions. Then, we constructed gene regulatory regression models using MIPRIP to fit 
gene expression values of TERT across all tumor and all healthy control samples based on 
the activities of these 75 potential regulators. We constructed a large set of models using 
subsets of transcription profiles from the prostate tumor or tissue samples of normal pros-
tate (n = 445 tumor and n = 18 healthy control samples). Comparing the TF frequencies in 
the models of tumors and healthy controls led to a list of 17 significant TF predicted to 
regulate TERT specifically in prostate tumors (Table 1). Table S1 in the Supplementary 
Material also lists 40 TF, which were significant for the controls. The most significant hits 
for the tumors were the TF PITX1, MITF, AR, and TFAP2C. Previously, we performed a 
pan-cancer analysis on TERT regulation, analyzing a comprehensive dataset of transcrip-
tion profiles of 19 cancer types using the same computational method [17]. In this pan-
cancer analysis, we identified TF as being specific for a single tumor type as well as com-
mon TF. Comparing the models of PCa versus all other 18 cancer types led (also) to 17 TF 
being specific for TERT regulation in PCa (from the 17 regulators, AR and E2F2 were also 
found in several other cancer entities (=common regulators)) (Table S2). We observed a 
high overlap, i.e., 12 TF, which were found in both analyses (marked with * in Table 1 and  
in Table S2). We selected these 12 TF serving as a short list of predicted direct regulators 
of TERT. In both studies, PITX1 was the most significant direct regulator of TERT for PCa. 
Notably, PITX1 is not a common TERT regulator within the investigated tumor entities. 
Over all 19 cancer types analyzed, it was a significant TERT regulator in only a few other 
cancers comprising head and neck carcinoma, ovary, and cervical cancer [17]. In sum-
mary, we assembled 12 TF predicted to be direct regulators of TERT in PCa, and among 
them, PITX1 was the most prominent. 

3.2. Identifying A Regulatory Module for TERT Regulation in PCa 
TF are highly interacting with other TF or co-factors, enabling a fine-grained homeo-

stasis of gene regulation, and particularly of pace making genes [18,50]. To infer such a 
regulatory network for TERT regulation, we used the 12 identified TF (identified as de-
scribed in the previous section). To add indirect regulators of TERT, which directly regu-
late these 12 direct TERT regulators, we first applied MIPRIP separately for the coding 
gene of each of the 12 direct regulators and selected all TF predicted by at least 20% of the 
models (Table 2). This resulted in 72 TF predicted to regulate the 12 direct TERT regula-
tors. For TFAP2D, no TF could be predicted as no expression values were available in the 
transcription profiles. Remarkably, 27 out of these 72 indirect regulators were also poten-
tial direct regulators of TERT (marked with * in Table 2). PITX1 showed the highest over-
lap of indirect and direct TF of TERT (5 out of 10). Next, we combined the direct and 
indirect regulators and constructed models following two objectives, i.e., (i) selecting di-
rect TERT regulators with which the model fit best the expression profiles of TERT across 
all investigated tumor samples (best fit of MIPRIP), and (ii) obtaining the most densely 
connected regulatory module (highest modularity) when adding TF from the pre-selected 
twenty-seven indirect TERT regulators. The tradeoff between these two objectives of a 
good model of direct TERT regulators versus a good modularity model was gauged by 
the weighting factor λ. For low λ values, the MIPRIP objective dominated the models, 
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while high λ values led to a modularity-driven regulator selection resulting in a high num-
ber of indirect regulators and an insufficient prediction of TERT expression. To obtain the 
best balance, we compared the number of indirect and direct TERT regulators in the mod-
els and selected the model with the best balance (λ = 1.188, see Figure 1A). With this se-
lection of the parameter, we observed a good prediction performance of TERT expression 
(Pearson’s correlation was r = 0.48 between model and experimentally (RNA-seq) derived 
expression values of TERT). For higher λ values, the performance dropped considerably 
(r ≈ 0.25) (Figure 1B). Furthermore, we observed that at least six direct regulators were 
necessary to obtain a good prediction of TERT expression in the MIPRIP models (Figure 
1C). Regarding the combinations of six direct regulators used most often over all models 
(after performing a 10-times three-fold cross-validation across several scales of the model, 
Figure 1D), led to the six direct regulators BHLHE40, CTCF, IRF1, MITF, PITX1, and 
TFAP2D (counted in 19% of the models (n = 108), p-value < 2.2E-16). These direct regula-
tors (Figure 1E, marked in red) were most often found in models with the 14 indirect reg-
ulators E2F4, MAZ, POLR2A, POU2F2, SMARCB1, TAF1, REST, PML, SMC3, ZNF263, 
EP300, YY1, MAFK, and USF1 leading to our final gene regulatory network module for 
TERT in PCa (Figure 1E). Out of these 14 regulators, E2F4, MAZ, POLR2A, POU2F2, 
SMARCB1, TAF1, and REST (marked in orange in Figure 1E) have been observed to also 
bind directly to the TERT promoter (as listed in the ChIP databases). To elucidate if the 
rest of the predicted indirect regulators were associated with telomere maintenance, we 
queried the TelNet database, a manually curated collection of telomere maintenance genes 
[51]. This query pointed to PML, SMC3, and USF1 (see Discussion). 

Our gene regulatory modeling analyses led to a gene regulatory network module for 
TERT regulation comprising 6 direct and 14 indirect regulators of TERT, very likely con-
trolling the specific regulation of TERT in PCa. 

3.3. PCa Tissue Cells with A High PITX1 Protein Expression Show Higher Telomere Staining 
Intensity 

Telomere length can be estimated by telomere-staining intensity [52]. We investi-
gated the association between telomere length and PITX1 status. For this, an established 
automated high-resolution imaging and analysis workflow we developed earlier [52] was 
applied to prostate tumor tissues on microarrays (tissue microarrays, TMA), focusing on 
a small, representative subset of patient samples from the immune-histochemical (IHC) 
analysis described in Methods (Figure 2A). From these TMA, three groups were investi-
gated, i.e., (i) all patient samples with high PITX1 protein expression in the IHC analysis 
and a high Gleason Score (≥4 + 4, 67,720 telomeres from n = 6 patients), a comparable 
number of samples (ii) with PITX1 status negative and high Gleason Score (≥ 4 + 4, 51,951 
telomeres from n = 5 patients), and (iii) PITX1 status negative and low Gleason Score (3 + 
4, 51,204 telomeres from n = 6 patients). For 34 samples (of n = 17 patients in duplicate), 
images were tiled and telomere and PITX1 intensities were considered on tumor regions 
specified by a pathologist (Figure 2B,C). Indeed, observing over half a million cells 
(520,847 cells, of these, were 279,410 in tumor regions and 241,437 in non-tumor regions), 
we found higher averaged telomere-staining intensity indicating longer telomeres in sam-
ples with high PITX1 expression compared to samples with PITX1 status negative (p-value 
< 0.001, Mann–Whitney U Test, Figure 2D). This shift was independent of the Gleason 
Score, i.e., the distributions of PITX1-negative samples with high and low Gleason Score 
were comparable (Figure S4). To support that tumors with a high PITX1 expression show 
higher telomere intensities, we investigated publicly available datasets of samples for 
which gene expression profiles and estimated telomere lengths had been obtained [52,53]. 
In line with the protein expression, we observed a positive correlation between estimated 
telomere lengths and PITX1 gene expression (r = 0.33, p-value = 0.01 when testing esti-
mated telomere length in PITX1 high versus low gene expression). 
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Figure 2. Quantification of telomere length in PCa tissues based on an automated 3D imaging-based 
workflow. (A) Shows an overview of the analyzed TMA. From this TMA, 34 tissue slides of 17 pa-
tient samples were imaged representing three different patient sample cohorts: one cohort included 
all patient samples with a PITX1 status high and high Gleason Score (≥4 + 4), one cohort with PITX1 
status low and high Gleason Score (≥4 + 4), and one with PITX1 status low and low Gleason Score 
(3 + 4). (B) For each core, tiled images were acquired and stitched together for the analysis. (C) To 
focus on the tumors, the tumor regions were manually marked by a pathologist. Only tumor regions 
were considered. (D) shows the distribution of mean telomere intensities of cells in samples with 
high (blue) versus negative (red) PITX1 levels, violet: overlapping events. 

In summary, we observed that PITX1 protein and gene expression in primary pros-
tate tumors correlate with longer telomeres. Details about the methods are given in the 
Supplementary Material (Text S1). 

3.4. In Vitro Experiments Showed That PITX1 Binds to the Promoter of TERT and PITX1 
Knockdown Reduces TERT Expression 

To validate our modeling predictions for PITX1, we selected a collection of four PCa 
cell lines showing different levels of TERT expression (Figure 3A). PC3-AR and PC3 ex-
pressed TERT rather low compared to LNCaP and C4–2, C4–2 showed the highest TERT 
expression. As hTERT mRNA expression is strictly controlled and closely associated with 
telomerase activity [53–55], we used TERT mRNA levels as a proxy for TERT protein lev-
els and telomerase activity. Like-wise endogenous PITX1 protein levels were investigated, 
revealing the highest PITX1 expression in LNCaP and lowest in PC3-AR (Figure 3A). Cor-
relating the protein expression of PITX1 and gene expression of TERT yielded on average 
an expected positive correlation (r = 0.09), however, not a strong positive correlation. 
PITX1 protein expression and TERT gene expression correlated high for PC3-AR, PC3, 
and LNCaP cells (r = 0.70), however, the overall correlation was lower, as PITX1 protein 
expression of C4–2 cells was comparably low to their exceptional high TERT gene expres-
sion. A further investigation of this can be interesting but was beyond the scope of our 
study. An efficient knockdown of PITX1 in all PCa cell lines showed significant downreg-
ulation of TERT expression compared to the control (Figure 3B+C). This shows that, as 

A B

C D
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suggested by our modeling approach, PITX1 plays an important role in the expression of 
TERT in PCa cells and that it can act as a positive regulator. Chromatin immunoprecipi-
tation (ChIP) showed that PITX1 directly binds to the TERT promoter at the −1.3kb region 
in the PCa cell lines LNCaP and C4–2 (Figure 3D) since upon knockdown of PITX1, PITX1 
bound to the DNA was significantly decreased, validating our predictions. As a negative 
control and to show specific binding, the −0.1kb TERT promoter region was additionally 
investigated, leading to no detectable qPCR signal besides in the input samples (Figure 3E 
and F). 

In summary, the experimental validations of PITX1 directly regulating TERT in PCa 
cells are in good agreement with our modeling predictions. 

 
Figure 3. PCa cell lines show divers TERT expression levels, decreased TERT expression and PITX1 TERT promoter binding upon 
PITX1 knockdown. (A) Endogenous TERT gene expression was quantified by qPCR in all investigated PCa cell lines, n = 3 biological 
replicates. For each cell line, a representative Western blot is shown. Numbers indicate the PITX1 protein band intensity normalized 
to α-tubulin. (B) TERT expression quantified by qPCR in non-targeting pool siRNA-transfected (siCtrl) or PITX1 targeting siRNA 
pool (siPITX1) transfected PCa cell lines. All cell lines express significantly lower TERT levels after PITX1 knockdown, n = 3 biological 
replicates. (C) Expression levels of PITX1 after siRNA knockdown (siPITX1) compared to a non-targeting siRNA pool (siCtrl). For 
each cell line, a representative Western Blot of siRNA knockdown is shown, including reagent control (siCtrl). Numbers indicate the 
PITX1 protein band intensity normalized to α-tubulin. In addition, a bar graph combining three biological replicates for each cell line 
is shown. All cell lines reveal a significant knockdown compared to the control. (D) ChIP against PITX1 was performed with either 
untreated (UN), non-targeting pool siRNA-transfected (siCtrl) or PITX1 targeting siRNA pool (siPITX1) transfected in LNCaP (left) 
and C4–2 (right) cells followed by qPCR. Significantly lower PITX1 binding to the −1.3 kb TERT promoter region compared to UN 
and siCtrl was obtained in the cells in which PITX1 was knocked down; LNCaP: n = 3 biological replicates; C4–2: n = 4 values for the 
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statistics obtained from two biological replicates with two technical replicates each. (E) Significant binding of the PITX1 antibody in 
untreated (UN) LNCaP and C4–2 cells in comparison to IgG control (IgG) antibody at the −1.3 kb TERT promoter region, LNCaP: n 
= 3 biological replicates; C4–2: n = 4 values for the statistics obtained from two biological replicates with two technical replicates each. 
(F) Negative control of PITX1 hTERT promoter binding (−0.1kb region, no binding site of PITX1) in untreated (UN) LNCaP cells in 
comparison to IgG control (IgG). For the PITX1 antibody there was no detectable CT value after 40 PCR cycles, n = 3 biological 
replicates, shown are mean and standard deviation (p ≤ 0.05 * , p ≤ 0.01 ** and p ≤ 0.001 ***). 

3.5. The Identified Transcription Factor PITX1 Suits as A Prognostic Marker 
The six direct TERT regulators from the regulatory subnetwork, PITX1, CTCF, IRF1, 

TFAP2D, MITF, and BHLHE40, were investigated for their prognostic power. For this, 
TMA of more than 15,000 PCa patients was used for an IHC analysis of these TF. The 
staining intensities (mostly categorized as negative, low, and high expressed) were corre-
lated with PSA-recurrence-free survival. Additionally, histopathological and molecular 
variables were studied (e.g., ERG-fusion gene status, PTEN deletion). For PITX1, the stain-
ing was observed in the nucleus and in the cytoplasm. PITX1 staining was evaluable for 
15,011 tumor samples on TMA. Figure S1A–C shows representative images of PITX1 im-
munostaining in tumor samples with a negative, low, and high PITX1 level. A total of 4% 
of the tumor samples (n = 600) showed a high PITX1 level, 57.7% (n = 8,661) were classified 
as low and 38.3% (n = 5749) as negative (Table 3). A Kaplan–Meier analysis revealed that 
patients with a high PITX1 level had distinctive lower PSA-recurrence free survival com-
pared to patients with a low or negative PITX1 level (p-value < 0.0001) (Figure 4A). As the 
number of patients with high PITX1 levels was low, we obtained a rather low sensitivity 
but high specificity when using PITX1 level low and negative as a predictor for five years 
PSA recurrence-free survival (7% sensitivity, 96% specificity). Using only PITX1 level neg-
ative as a predictor of PSA recurrence-free survival, sensitivity was 68% and specificity 
39%. 

Table 3. Association of PITX1 expression in tumor tissues and PCa characteristics. 

 PITX1  
Parameter  n Evaluable  Negative (%)  Low (%)  High (%) p Value  
All cancers 15011 38.3 57.7 4.0  

      
Tumor stage      

<0.0001 
pT2  9555 41.5 55.5 3.0 
pT3a  3366 34.6 60.4 5.0 

pT3b-pT4 2030 30.0 63.0 7.0 
      

Gleason grade     

<0.0001 

≤3+3  2794 41.8 55.3 2.8 
3+4 7971 40.2 56.5 3.3 

3+4 Tert.5 720 38.9 57.6 3.5 
4+3 1479 30.6 62.8 6.6 

4+3 Tert.5 1056 31.3 63.5 5.2 

≥4+4  867 28.7 61.5 9.8 

      
Lymph node metastasis     <0.0001 
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N0  9067 37.7 58.0 4.3 
N+  1121 30.2 63.2 6.6 

      
Surgical margin     

<0.0001 negative  11973 39.2 57.1 3.7 
positive  2985 35.1 59.8 5.1 

 
Figure 4. Kaplan–Meier curves of PITX1 high, low, and no protein expression over all patients (A) 
ERG-fusion positive (B), and negative subgroups (C). (D) shows the Kaplan–Meier curve for IRF1 
protein expression over all patients. The PSA-recurrence free-survival was used as the primary end-
point. 

Compared to PITX1 negative, low or high PITX1 level (in the following denoted as 
samples with a positive PITX1 level) was associated with higher tumor aggressiveness 
including advanced tumor stage (p-value < 0.0001), higher Gleason grade, more presence 
of lymph node metastasis, and more positive surgical margin (p-value < 0.0001 each). Fur-
thermore, PITX1 was strongly linked to the presence of ERG fusion: nearly 80% of ERG 
positive tumor samples (71.6% low and 6.9% high) but only 55% of ERG negative tumor 
samples (51.5% low and 3.3% high) (p < 0.0001; Tables S3 and S4) showed immune-histo-
chemical PITX1 expression. To address the relationship between PITX1 and genomic in-
stability, we compared data on recurrent deletions prevailing in ERG-fusion positive 
(10q23, PTEN; 3p14, FOXP1) [37,38] or ERG-fusion negative PCa (5q21, CHD1; 6q15, 
MAP3K7) from a previous analysis of the TMA [39,40]. It showed that PITX1 positivity 
was strongly linked to all four deletions (p < 0.0001 each) in ERG-negative cancers, while 
this association was lost in ERG-positive cancers, most likely because of the general up-
regulation of PITX1 in this subset (Figure S2A–C). Additionally, PITX1-positive cancers 
showed a higher Ki67 index pointing to accelerated cell proliferation, and this was inde-
pendent of the Gleason grade (Table S5). The patient’s outcome was independent of the 
ERG-fusion gene status (Figure 4B and 4C). To determine whether PITX1 can provide an 
added value to the established prognostic parameters, four different multivariate models 
were calculated to resemble typical clinical scenarios (Table S6). Scenario 1 utilizes all 
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available parameters after radical prostatectomy (pathological tumor stage, Gleason 
grade, lymph node, and surgical margin status, as well as pre-operative PSA level) and 
PITX1 level. Scenario 2 excludes the nodal status, as lymph node dissection is not stand-
ardized in surgical PCa therapy. Scenarios 3 and 4 model the pre-operative situation, tak-
ing into account that the Gleason grade of the biopsy is often underestimated. Scenario 3 
included PITX1 level, clinical tumor stage, pre-operative PSA level, and the “true” 
Gleason grade (which, however, can only be obtained from the prostatectomy specimens), 
while in scenario 4, the less reliable Gleason grade obtained from the biopsies were used. 
In general, the postoperative determination of the Gleason grade is more precise than the 
pre-operative determination [56]. It turned out that PITX1 expression contributed signifi-
cantly, particularly in scenario 4, supporting its complementary role to PSA, tumor stage, 
and Gleason grade from the biopsy, i.e., to variables being available before prostatectomy. 
The best improvement of AUCROC was for scenario 4 in ERG-negative cancers by 0.9% 
(Table S6). 

In summary, PITX1 expression in tumor samples suits as a biomarker for the prog-
nosis of PCa progression, particularly in combination with the pre-operative variables 
PSA, Gleason grade from biopsies, and tumor stage. 

3.6. The Identified Transcription Factors IRF1, CTCF, and TFAP2D Also Suit as Prognostic 
Markers, Particularly when Combining them with PITX1 

Furthermore, we analyzed CTCF, IRF1, and TFAP2D immunohistochemically based 
on the same patient cohort. For IRF1, only 2% of the patients showed a high IRF1 level, 
but these were significantly associated with poorer PSA-recurrence-free survival com-
pared to patients with a low IRF1-staining intensity (p = 0.0001, Figure 4D). The CTCF and 
TFAP2D analysis were published by us elsewhere recently. Briefly, high CTCF expression 
is associated with a poor outcome, in particular, for ERG-fusion negative PCa. In a signif-
icant fraction of PCa patients, CTCF showed high expression and was associated with 
tumor aggressiveness (high Gleason grade, advanced tumor stage, lymph node metasta-
sis, early biochemical recurrence, as well as accelerated cell proliferation) (details are 
given in [45]). For TFAP2D, we observed that the TFAP2D level was high in about 75% of 
the patients with poorer clinical course, details see [44]. 

For the remaining predicted TF, BHLHE40, and MITF, an immune histochemical 
staining analysis could not be performed since no suitable antibodies were available. In 
summary, four out of six identified PCa-specific TERT regulators from the gene regulatory 
model suit well as novel prognostic markers for PCa. These four markers can support 
decision-making. Combining the identified prognostic markers further improved the pre-
diction. A high expression of these four markers showed a strongly decreased PSA-pro-
gression free-survival compared to a high expression of only two or less of these markers. 
For this, specific scores for a negative, weak, moderate or strong staining signal were 
summed up, and a Kaplan–Meier analysis was performed for differently summed scores 
(Figure S3). In summary, the modeling analysis identified four new, valuable prognostic 
markers, and particularly PITX1, for prognosis of PCa progression. 

4. Discussion 
We applied a new network modeling approach to a comprehensive transcription pro-

filing dataset of PCa and identified a gene regulatory network module of direct and indi-
rect regulators (transcription factors) for regulating TERT. This module predicted six di-
rect TERT regulators, i.e., BHLHE40, CTCF, IRF1, MITF, PITX1, and TFAP2D, and 14 in-
direct regulators regulating TERT expression through the direct TERT regulators. 

As the most significant direct regulator of TERT, we identified PITX1. We experimen-
tally studied the impact of PITX1 on telomere lengths and TERT expression. Investigating 
more than 500,000 cells on tissue slides, we found longer telomere lengths in samples with 
high compared to low PITX1 protein expression. Chromatin immunoprecipitation 
showed that PITX1 binds to the TERT promoter at the −1.3 kb region in PCa cells to our 
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knowledge for the first time. Furthermore, within a functional assay, we observed TERT 
to be down-regulated when knocking down PITX1. From these observations, we conclude 
that PITX1 is an activator of TERT and hence supports telomerase activity in PCa, sug-
gesting to enable higher proliferation. Indeed, we observed higher Ki-67 values in tumor 
samples from patients with non-negative PITX1 protein expression, indicating higher pro-
liferation of these tumors. It has been shown that PITX1 regulates TERT also in cells of 
other cancer types. Qi et al. imported human chromosome 5 into the murine melanoma 
cell line B16F10 using microcell-mediated chromosome transfer [49]. They observed that 
human PITX1 could directly bind to the mtert and hTERT promoter (one binding site at the 
mtert, three at the hTERT promoter). Recently, it was reported that interaction of PITX1 
and ZCCHC10 contributes to TERT regulation in melanoma cells [57], and it was shown 
that PITX1 binds to the TERT promoter in gastric cancer cells [58]. In a functional study, 
Ohira et al. showed that PITX1 was directly regulated by microRNA-19b (miR-19b), and 
inhibition of PITX1 expression by miR-19b mimics was associated with increased hTERT 
transcription and proliferation in human kidney cells [59]. Hence, PITX1 was rather de-
scribed as a suppressor of TERT expression and telomerase activity in cells of this other 
cancer type. In turn, we observed it to act as an activator supporting its oncogenic role in 
PCa. Originally, PITX1 was described as a developmental morphogenic factor [60]. Its am-
bivalent role may be linked to its developmental role. This needs further investigation in 
future studies. 

In addition, in clinical oncology, PITX1 has been associated with very controversial 
roles. Several studies have identified PITX1 as a tumor marker for an unfavorable clinical 
course. Based on 347 normal lung tissues and 483 tissues of lung adenocarcinomas, Zhang 
et al. found that the mRNA level of PITX1 was significantly higher in patients with lung 
adenocarcinoma than in controls, and this association was validated on the protein level 
performing Western blots for n = 12 patients [61]. Similarly, high PITX1 expression was 
associated with poor prognosis in lung adenocarcinoma [62] and head and neck squa-
mous cell carcinoma [63]. In contrast, PITX1 over-expression was associated with a more 
favorable outcome of osteosarcoma [64], colorectal [65], gastric cancer [58], and esopha-
geal squamous cell carcinoma [66]. Kolfschoten et al. observed high PITX1 gene expres-
sion in normal prostate, muscle, lung, and kidney tissue when comparing 12 different 
tissues, and, based on a rather small dataset of n = 52 samples from prostate tumors, they 
found PITX1 to be relatively lower expressed in the cancer material compared to normal 
tissue [67]. Experimentally, they showed that PITX1 suppresses cell growth of human fi-
broblasts, mediated by downregulation of the RAS pathway through RASAL1. Further-
more, they showed that knockdown of PITX1 in a prostate cell line induced its cell growth. 
To note, this experiment was conducted in RWPE1 cells, which were immortalized pros-
tate cells, not originating from tumors (HPV induced immortalization and readily trans-
formed by oncogenic K-RAS). Liu and Lobie observed that PITX1 activates p53 in breast 
cancer cells leading to induced cell cycle arrest and apoptosis [68]. Here, we observed 
PITX1 protein to be expressed in approximately two-thirds of more than 15,000 PCa sam-
ples in contrast to samples from normal prostate tissue, in which it was low or not ex-
pressed. This seems in contradiction to the observations by Kolfschoten et al. and needs 
future investigations. We identified PITX1 as a prognostic marker for PCa. Tissue slides 
of a comprehensive set of more than 15,000 prostate tumors showed that a low or high 
level of PITX1 was associated with a poorer prognosis compared to PITX1 negative status. 
Along with this, for this patient group, we found higher Ki67 level (indicating higher cell 
proliferation) and higher tumor aggressiveness (advanced tumor stage, higher Gleason 
Score, more presence of lymph node metastasis, higher levels of positive surgical margin). 

We also predicted CTCF, IRF1, TFAP2D, BHLHE40, and MITF as direct regulators of 
TERT. As reported recently, we identified the CCCTC-binding factor (CTCF) as a good 
prognostic marker specifically for patients with ERG-negative PCa [45]. IHC staining of 
TFAP2D (details, see [44]) and IRF1 showed that both transcription factors also suited as 
prognostic markers for PCa. For the predicted direct regulators MITF and BHLHE40, the 
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immunohistochemical staining did not work in our assays. As a future aspect, we sug-
gested the development of new antibodies for these potential biomarkers. Hence, four out 
of six direct regulators of the identified gene regulatory module suited very well as prog-
nostic markers. Combining them in a linear regression model further improved the pre-
dictive power. 

The gene regulatory network module consisted of 14 indirect regulators. Seven out 
of these indirect regulators (E2F4, MAZ, POLR2A, POU2F2, SMARCB1, TAF1, and REST) 
can potentially bind to the TERT promoter and may hence regulate TERT also directly, 
but this needs further experimental investigation. The identified indirect regulators 
SMC3, PML, and USF1, have been described in the context of telomere maintenance [51]. 
USF1 is a telomerase activating and repressive factor reported to bind to the human TERT 
promoter regulating its expression [16]. SMC3 has been described to mediate chromosome 
cohesion, DNA replication, and DNA repair, and it was found at telomeres of telomerase-
positive HeLa cells [69,70]. Thus far, PML was described to be rather involved in alterna-
tive telomere maintenance mechanisms (ALT). It was observed to localize to telomeres in 
ALT-positive cells, forming an ALT-associated PML body (APB) [69,71]. PML nuclear 
bodies were proposed to promote telomeric recombination in ALT cells [72]. We suggest 
now also a regulatory role of PML for canonical telomere maintenance. 

Until now, the PSA level in blood and Gleason grading of tumor samples are the best-
established parameters for the diagnosis and prognosis of PCa. Particularly, the postop-
erative determination of the Gleason grade investigating the dissected tumor sample can 
be very precise [56]. Recently, we suggested an optimized Gleason grading (quantitative 
Gleason or IQ Gleason), leading to a more refined estimation of patient prognosis com-
pared to conventional Gleason grading [73]. In turn, pre-operative prediction based on 
biopsies can be rather error-prone [56], as, by chance, biopsies may not reveal the actual 
aggressiveness of the tumor when sampled from inappropriate sites. Hence, it is clinically 
highly relevant to find better means to predict a patient’s clinical course before surgery. 
The data of this study suggest that PITX1, and probably even superior, the combined anal-
ysis of the four identified key transcription factors may substantially improve estimating 
patient prognosis and can potentially aid in clinical decision making. Our study is based 
on a large collection of more than 15,000 tumor samples. Still, in the future, a clinical trial 
is necessary to prospectively prove our biomarkers in the daily clinical routine and par-
ticularly assess their power when based on biopsy samples. 

Methodologically, we developed a new Mixed Integer Linear Programming based 
approach to construct a gene regulatory network elucidating the regulation of TERT ex-
pression. Mixed Integer Linear Programming can be applied to a large range of problems, 
including time table optimization, solving the traveling salesman problem, Flux Balance 
Analysis [74], analyses of cell-networks [75,76], classification [77], or inferring gene regu-
lation [24,27]. In a MILP framework, problems can be combined straightforwardly by add-
ing their lists of constraints. As regulators are highly interacting with each other or other 
co-factors to regulate the expression of a particular gene, we considered not only the reg-
ulators directly binding to the promoter of the particular gene but we also integrated TF 
directly interacting with the ‘direct’ regulators and hence indirectly with the target gene. 
Using this approach, we identified a highly connected subnetwork, with which we could 
best predict the gene expression profile of TERT in the direct gene regulatory model while 
maximizing the sum of edge weights between the connected nodes of the indirect net-
work. These two objectives were balanced, leading to high connectivity in the regulatory 
module and accurate TERT expression prediction. This approach is generic and can be 
applied to any other disease or investigated biological condition for which such gene reg-
ulatory modules of direct and indirect regulators are of interest, as long as sufficient tran-
scription profiles are available. 

As negative controls, we used expression data of samples annotated as normal tis-
sues. Interrogating the original study [3], these samples are described as adjacent to the 
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prostate tumor samples. Using patient-matched normal controls when compared with tu-
mors is generally an advantage. However, this may also have the limitation of the pres-
ence of some tumor cell infiltration or infiltration of other cells of the tumor microenvi-
ronment and is a likely explanation for the detectable levels of TERT expression in these 
samples. In line, our modeling analysis also predicted TERT regulators for these samples, 
which may be reasoned by such an infiltration. We see the clinical application of our re-
sults primarily in PITX1 serving as a new biomarker for prostate cancer rather than as a 
therapeutic target. In initial cell assays, we could not see a significant reduction in the 
growth rate when knocking down PITX1. For this, we observed the optical density until 
five days after knockdown. As the effects of reduced telomerase activity on growth may 
be seen only after many cell divisions (when cells obtain senescent due to too shortened 
telomeres), future studies may be needed to shape long-time effects. 

5. Conclusions 
In summary, it is known that TERT does not suit as a prognostic marker for PCa as it 

is very low expressed. Still, TERT is essential for PCa cells. It is needed for telomere 
maintenance, as no alternative telomere maintenance (ALT) mechanism has been ob-
served. We investigated if, instead of TERT, we find regulators suiting as prognostic mark-
ers. Constructing and applying a new gene regulatory network module considering di-
rectly acting TF and TF indirectly regulating the expression of TERT by interacting with 
directly regulating TF, we predicted six TF directly regulating TERT. Investigating stained 
tumor samples, four out of these six TF suit as good prognostic markers for PCa progres-
sion, and particularly when the information of their protein expression on these tumor 
samples is combined. Our most prominent hit, PITX1, was experimentally validated act-
ing as an activating TF of TERT expression in PCa cells. For the future, a clinical trial is 
necessary to prove PITX1 as a new biomarker for the daily clinical routine, particularly 
when using pre-operative biopsies. In addition, the mechanistic link of PITX1 mediated 
TERT regulation and survival needs more elaborative future investigations. 
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ulators, Table S2. Significant TERT regulators of PCa compared to 18 other cancer types, Table S3. 
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tumors, Table S4. Association between PITX1 immunostaining results and PCa phenotype in ERG–
fusion positive tumors, Table S5. Association between PITX1 expression and Ki67-labeling index in 
a) all, b) Gleason grade ≤ 3 + 3, c) Gleason grade 3 + 4, d) Gleason grade 4 + 3, e) Gleason grade ≥ 4 + 
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Text S1. Associating telomere length to PITX1 expression employing microarrays of 

tissue slides of PCa 

To determine whether the telomere length of tumors with different PITX1 levels differs, a tissue 

microarray (TMA) including a subset of the analyzed IHC patient cohort (246 cores, 2 cores 

per patient) was used. This subset included 8 patient samples with high PITX1 level, 61 patient 

samples with low PITX1 level, and 48 patient samples with no PITX1 (negative) based on the 

IHC analysis described above. The staining of telomeres and centromeres was performed as 

described previously (Gunkel et al, 2017). The tissue microarray was deparaffinized by 

incubating the samples three times in xylene for 5 min. For rehydration, the sample was 

incubated in a reverse ethanol row (2x in 100%, 2x in 95% and 2x in 70% ethanol for 3 min 

each) and subsequently rinsed in deionized water for 3 min and in 1% Tween20 for 1 min. For 

antigen retrieval, slides were boiled in 10 mM sodium citrate (in H20, pH 6) for 9 min. After 20 

min cooling at room temperature the slide was briefly washed with deionized water for 1 min. 

For dehydration, the TMA was immersed twice in 70%, 85% and 100% ethanol for 3 min each 

and air dried for a few minutes. Denaturation and FISH probe hybridization was performed as 

follows: PNA hybridization buffer (70% formamide, 10 mM Tris HCl, pH 7.5, 0.1lg/ml salmon 

sperm DNA) containing 0.1 M of a Cy3-labeled telomere probe (CCCTAA)3(TelC-Cy3, 

Panagene) and a final concentration of 5 µg/mL of a FAM-labeled PNA probe 

(ATTCGTTGGAAACGGGA) that is directed against the CENP-B binding site in the 

centromeric alpha satellite DNA (CENP-B-FAM, PNA Bio) was added to the slide. The TMA 

was heated to 84°C for 5 min for denaturation and hybridization took place o.n. at 30 °C in a 

wet chamber. Next, the TMA was washed twice for 15 min with gentle agitation in PNA washed 

buffer (70% formamide, 10 mM Tris-HCl,pH 7.4), 1 min in 2x SSC, 5 min in 0.1x SSC at 55 °C, 

2x 5 min in 0.05% Tween-20 (in 2x SSC) and three times in PBST (0.1% Tween20 in 1xPBS) 

for 5 min. For immunolabeling of PITX1, an anti-PITX1 antibody (ab70273, Lot: 6R2538F4-13, 

Abcam, 1:200) was used. First, the TMA was blocked with 10% goat serum for 1 hour at room 

temperature in a wet chamber and subsequent to a brief washing step with PBST, incubated 

with the primary antibody (1:250 dilution) for 1 hour at room temperature followed by a second 

washing step with PBST and incubation with an ATTO633-labeled secondary antibody (1:300) 

for 1 hour. After re-washing three times in PBS, salts were washed out with deionized water 

and the TMA was mounted in Prolong gold antifade including DAPI. 

From this TMA, 34 cores (17 patient samples, 2 TMA cores each) were imaged with an Andor 

Dragonfly Spinning Disc Microscope. Patient samples were selected based on the PITX1 

protein level (high or negative) and the Gleason score. From 17 patient samples, 6 had a high 

PITX1 level based on the IHC staining and a high Gleason Score (>= 4+4). The other 11 patient 

samples were negative for PITX1 in the IHC staining and represent the Gleason groups >= 

4+4 (5 patient samples) and 3+4 (6 patient samples). For each core, a tiled image was acquired 
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covering the full area of the core. Most cores could be covered with a tiling of 11 x 11 at 12.5% 

overlap for stitching, in some cases up to 13 tiles in one direction were necessary for a 

complete coverage. Each tile had a dimension of 68.2 µm x 68.2 µm x 10 µm. For four color 

channels, stacks were acquired with an Andor Ixon EM-CCD (1024 x 1024 pixel) at each tile 

position with excitations of 640 nm, 561 nm, 488 nm, and 405 nm, respectively, with a stack 

spacing of 250 nm, resulting in 164 images for each tile equivalent to 345 MB of image data 

per stack. For a single core, at least 19.481 images equivalent to 40 GB of image data was 

acquired. For all 34 cores, 832,301 images were acquired in total, yielding 2.5 TB of image 

data. With Macros written in ImageJ, each image stack was projected to a single plane 

(maximum projection) and stitched in order to obtain a complete overview image of each core 

(Figure S4B). In the stitched images the tumor region was marked by a pathologist (Ronald 

Simon) to distinguish between tumor and normal tissue (Figure S4C). These marked regions 

were subsequently transferred to the original tiles by Macros written in ImageJ and workflows 

composed using KNIME (www.knime.org). For the 3D images within each core, 2D maximum 

intensity projection (MIP) was applied. To distinguish between tumor and normal tissue, the 

tumor regions were manually marked by a pathologist in the MIP images. These annotated 

tumor regions were subsequently mapped back to 3D. For each tumor region, slice-wise 

segmentation of cell nuclei was performed using ASPP-Net (Wollmann, 2018). Afterwards, 

small objects were removed and small holes were filled using morphological operations. The 

ASPP-Net was pre-trained using images from Ulman et al. (Ulman et al, 2017) and fine-tuned 

on the target dataset, employing 50 manually annotated images. Training was performed with 

progressive resizing from one quarter resolution to the original resolution of the images to 

reduce the computation time. Telomere spots within the segmented cell nuclei were quantified 

using a 3D model-based approach (Worz et al, 2010). Candidate spots were detected 

employing an anisotropic 3D Laplacian of Gaussian filter (σx,y = 1.5 voxels, σz = 1.0 voxels). 

For each detected candidate spot, 3D least-squares model fitting with an anisotropic 3D 

Gaussian intensity model representing the intensity profile of telomere spots was performed. 

Based on the fitting results, the mean intensity of telomere spots was determined. 

For gene expression analysis with regard to telomere length, published data on estimated 

telomere length information (Barthel et al, 2017) generated by TelSeq (Ding et al, 2014) based 

on whole genome sequencing data of the TCGA PCa cohort was used. The telomere length 

was correlated with the PITX1 gene expression from the TCGA PCa RNA-seq dataset used in 

our modelling approach. Samples with a telomere length < 0.1 kb were excluded. 
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Table S1. Significant TERT regulators of normal prostate tissue (control) versus PCa tissue 
to identify tumor specific regulators 
 

Regulators 

normal 

Frequency normal 

(n=300 models) 

Frequency tumor 

(n=300 models) 

p-value** 

TAF9 53 3 1.60E-12 

AP-2 42 1 2.15E-11 

ETS2 31 0 2.81E-09 

HIF1A 31 0 2.81E-09 

E2F5 29 0 1.06E-08 

HNRNPK 33 1 1.06E-08 

EPAS1 27 0 4.33E-08 

TP73 24 0 3.69E-07 

CTCFL 33 3 4.91E-07 

TFAP2B 30 2 5.57E-07 

SMAD3 21 0 2.62E-06 

MXD1 27 2 3.59E-06 

MYCN 29 3 5.13E-06 

ESR1 26 2 6.36E-06 

NFAT5 27 3 1.62E-05 

RUNX2 20 1 4.50E-05 

RELA 25 3 5.07E-05 

TP53 27 4 5.80E-05 

SP3 24 3 8.50E-05 

TAL1 29 6 1.75E-04 

EGR1 17 1 2.60E-04 

E2F4 29 7 4.41E-04 

HMGA2 28 7 7.23E-04 

NFKB1-RELA 

complex 

20 3 7.79E-04 

HIF1 complex 21 4 1.41E-03 

GRHL2 14 1 1.60E-03 

ZBTB48 28 8 1.60E-03 

NFX1 31 11 3.62E-03 

MZF1 14 2 6.35E-03 

PAX8 14 2 6.35E-03 

NFATC2 16 3 6.38E-03 

GLI1 11 1 9.37E-03 

E2F6 31 13 1.12E-02 

HEY1 24 9 1.70E-02 

TCF7 12 2 1.79E-02 

IKZF1 20 7 2.44E-02 

ESR2 15 4 2.51E-02 

NFKB 

complex 

9 1 2.90E-02 

JUND 28 13 3.12E-02 

WT1 10 2 4.83E-02 

 
** Adjusted for multiple testing correction (Benjamini-Hochberg) 

 

 

 



 

5 

 

 
Table S2. Significant TERT regulators of PCa compared to 18 other cancer types (based on 
the pan-cancer analysis from (Poos et al, 2019)) 
 

TF p-value** 

PITX1* 2.79E-21 

ETS1 3.04E-19 

MITF 2.56E-17 

NR2F2 8.28E-16 

IRF1 3.38E-13 

TFAP2D 4.24E-10 

CEBPA 2.09E-08 

E2F2 1.02E-07 

BHLHE40 5.67E-06 

KLF2 7.09E-04 

TFAP2C 2.35E-03 

AR 5.22E-03 

ZBTB48 8.13E-03 

NFKB1-RELA complex 1.62E-02 

CTCF 2.48E-02 

MEN1 3.37E-02 

TFAP2A 4.75E-02 

 
* Yellow: overlap to the comparison of prostate cancer versus normal prostate tissue 
** Adjusted for multiple testing (Benjamini-Hochberg) 
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Table S3. Association between PITX1 immunostaining results and PCa phenotype in ERG–
fusion negative tumors 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table S4. Association between PITX1 immunostaining results and PCa phenotype in ERG–
fusion positive tumors 
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Table S5. Association between PITX1 expression and Ki67-labeling index in a) all, b) Gleason 
grade ≤3+3, c) Gleason grade 3+4, d) Gleason grade 4+3, e) Gleason grade ≥4+4, f) PTEN 
norm, g) PTEN del PCa 
 

 
 

 
Table S6. Multivariate analysis including PITX1 expression in a) all cancers, b) ERG-
negative and c) ERG-positive cancers 
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Figure S1. PITX1 protein expression and knockdown efficiency in PCa cell lines. (A) 

Endogenous expression levels of PITX1 in PCa cell lines. (B-E) Expression levels of PITX1 

after siRNA knockdown (siPITX1) compared to a non-targeting siRNA pool (siCtrl). For each 

cell line, a representative Western Blot of siRNA knockdown is shown, including reagent 

control (siCtrl). Numbers indicate the PITX1 protein band intensity normalized to α-tubulin. In 

addition, a bar graph combining three biological replicates for each cell line is shown. All cell 

lines reveal a significant knockdown compared to the control. (F) Significant binding of PITX1 

antibody in untreated (UN) LNCaP and C4-2 cells in comparison to IgG control (IgG). LNCaP: 

n=3 biological replicates; C4-2: n=4 technical replicates obtained from 2 biological replicates.      

 
 
 

 
 
A            B           C 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
Figure S2. Representative images of PITX1 staining of PCa with A) negative, B) low and C) 
high expression of PITX1. 
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Figure S3. Association between PITX1 and PTEN, 6q15, 5q21 and 3p13 deletions 
 
 

 

 

 

 

 

 

 

 

 

 

 



 

11 

 

 
 

Figure S4. Kaplan Meier curve of the combination of all four markers using the optimized sum of 

scores for PITX1 (scores 0, 1, 1, 3 for negative, weak, moderate, strong, respectively), CTCF 

(scores 0, 2, 2, 3 for negative, weak, moderate, strong, respectively), IRF1 (scores 0, 0,0,4 for 

negative, weak, moderate, strong, respectively) and TFAP2D (scores 0, 1, 2, 2 for negative, 

weak, moderate, strong, respectively). 
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